题目内容
【题目】已知函数
,
.
(Ⅰ)当
时,求
的最小值;
(Ⅱ)若
有两个零点,求参数
的取值范围
【答案】(Ⅰ)0;
(Ⅱ)
.
【解析】
(Ⅰ)求函数的定义域,再求导,判别导函数的正负可得原函数的单调性,可求得最小值;
(Ⅱ)对a进行分类讨论,分别利用其导函数的应用,判别其单调性,求其最值,可得参数a的范围.
(Ⅰ)
,定义域
![]()
当
时,
,由于
在
恒成立
故
在
单调递减,
在
单调递增.
故 ![]()
(Ⅱ)![]()
当
时,
在
单调递减,
在
单调递增
,
只有一个零点
当
时,
,故
在
恒成立,
故
在
单调递减,
在
单调递增
,
故当
时,
没有零点.
当
时,令
,得
,
在
单调递减,
在
单调递增.
,
在
有两个零点,![]()
在
单调递减,在
单调递增,在
单调递减,在
单调递增,
,又
此时
有两个零点,
综上
有两个零点,则![]()
练习册系列答案
相关题目
【题目】某种商品价格与该商品日需求量之间的几组对照数据如下表,经过进一步统计分析,发现y与x具有线性相关关系.
价格x(元/kg) | 10 | 15 | 20 | 25 | 30 |
日需求量y(kg) | 11 | 10 | 8 | 6 | 5 |
(1)根据上表给出的数据,求出y与x的线性回归方程
;
(2)利用(1)中的回归方程,当价格
元/kg时,日需求量y的预测值为多少?
(参考公式:线性回归方程
,其中
,
.)