题目内容

设函数f(x)=x(ex+ae-x),x∈R,是偶函数,则实数a=______.
∵函数f(x)=x(ex+ae-x),x∈R是偶函数,∴f(-x)=f(x),即(-x)•(e-x+aex)=x(ex+ae-x),
整理,得(a+1)•x•(1+e2x)=0.
∵x∈R,1+e2x>0,∴a+1=0,故a=-1.
故答案为-1.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网