题目内容
7.已知△ABC的内角分别为∠A、∠B、∠C.(1)求证:sin$\frac{B+C}{2}$=cos$\frac{A}{2}$;
(2)若lgsinA=0,且sinB、sinC是关于x的方程4x2-2($\sqrt{3}$+1)x+k=0的两个根,求实数k的值.
分析 (1)由三角形内角和定理及诱导公式即可证明.
(2)由lgsinA=0,解得:sinA=1,结合A的范围,可得A=$\frac{π}{2}$.由韦达定理及诱导公式可得sinB+cosB=$\frac{2(\sqrt{3}+1)}{4}$,两边平方解得:sin2B=$\frac{\sqrt{3}}{2}$,解得sinBsinC=$\frac{1}{2}$sin2B=$\frac{1}{2}×\frac{\sqrt{3}}{2}$=$\frac{k}{4}$,即可解得k的值.
解答 解:(1)证明:左边=sin$\frac{B+C}{2}$=sin($\frac{π-A}{2}$)=sin($\frac{π}{2}-\frac{A}{2}$)=cos$\frac{A}{2}$=右边,从而得证;
(2)∵lgsinA=0,解得:sinA=1,
∵A∈(0,π),
∴A=$\frac{π}{2}$.
∵sinB、sinC是关于x的方程4x2-2($\sqrt{3}$+1)x+k=0的两个根,
∴sinB+sinC=sinB+sin($\frac{π}{2}$-B)=sinB+cosB=$\frac{2(\sqrt{3}+1)}{4}$,两边平方可得:1+sin2B=$\frac{4+2\sqrt{3}}{4}$,解得:sin2B=$\frac{\sqrt{3}}{2}$,
∴sinBsinC=sinBsin($\frac{π}{2}-B$)=sinBcosB=$\frac{1}{2}$sin2B=$\frac{1}{2}×\frac{\sqrt{3}}{2}$=$\frac{k}{4}$,解得:k=$\sqrt{3}$.
点评 本题主要考查了三角形内角和定理,同角三角函数关系式及诱导公式的应用,考查了韦达定理,倍角公式的应用及计算能力,属于中档题.