题目内容
过椭圆
的左焦点
任作一条与两坐标轴都不垂直的弦
,若点
在
轴上,且使得
为
的一条内角平分线,则称点
为该椭圆的“左特征点”.
(1)求椭圆
的“左特征点”
的坐标;
(2)试根据(1)中的结论猜测:椭圆
的“左特征点”
是一个怎样的点?
并证明你的结论.
(1)求椭圆
(2)试根据(1)中的结论猜测:椭圆
并证明你的结论.
(1)
(2)证明略
(1)
;(2)
为椭圆的“左特征点”,证明略.
练习册系列答案
相关题目
题目内容