题目内容

6.求数列$\frac{1}{3}$,$\frac{3}{{3}^{2}}$,$\frac{7}{{3}^{3}}$,$\frac{15}{{3}^{4}}$,…,$\frac{{2}^{n}-1}{{3}^{n}}$的所有项的和.

分析 利用$\frac{{2}^{n}-1}{{3}^{n}}$=$(\frac{2}{3})^{n}$-$\frac{1}{{3}^{n}}$可知所求值为以首项、公比均为$\frac{2}{3}$的等比数列的前n项和与以首项、公比均为$\frac{1}{3}$的等比数列的前n项和的差,进而计算可得结论.

解答 解:∵$\frac{{2}^{n}-1}{{3}^{n}}$=$(\frac{2}{3})^{n}$-$\frac{1}{{3}^{n}}$,
∴所求值为$\frac{\frac{2}{3}[1-(\frac{2}{3})^{n}]}{1-\frac{2}{3}}$-$\frac{\frac{1}{3}(1-\frac{1}{{3}^{n}})}{1-\frac{1}{3}}$=$\frac{3}{2}$+$\frac{1}{2}$•$\frac{1}{{3}^{n}}$-2•$(\frac{2}{3})^{n}$.

点评 本题考查数列的通项,分别利用等差、等比数列的求和公式是解决本题的关键,注意解题方法的积累,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网