题目内容

解答题

若函数f(x)对定义域中任意x均满足f(x)+f(2a-x)=2b,则称函数y=f(x)的图象关于点(a,b)对称.

(1)

已知函数的图象关于点(0,1)对称,求实数m的值;

(2)

已知函数g(x)在(-∞,0)Y(0,+∞)上的图象关于点(0,1)对称,且当x∈(0,+∞)时,g(x)=x2+ax+1,求函数g(x)在(-∞,0)上的解析式;

(3)

在(1)、(2)的条件下,当t>0时,若对实数任意x∈(-∞,0),恒有g(x)<f(t)成立,求实数a的取值范围.

答案:
解析:

(1)

解:由题设可得………………3分

(2)

解:当x<0时,…………6分

(3)

解:由(1)得其最小值为f(1)=3

………………9分

①当11分

②当………13分

由①、②得………………………………14分


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网