题目内容
若f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)对任意实数t,都有f(t+
)=f(-t+
).记g(x)=Acos(ωx+φ)-1,则g(
)=______.
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
∵对任意实数t,都有f(t+
)=f(-t+
).
函数f(x)的图象关于直线x=
对称
又∵f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)
∴ω
+φ=kπ+
,k∈Z
又∵g(x)=Acos(ωx+φ)-1
g(
)=Acos(ω
+φ)-1
=Acos(kπ+
)-1=-1
故答案为:-1
| π |
| 3 |
| π |
| 3 |
函数f(x)的图象关于直线x=
| π |
| 3 |
又∵f(x)=Asin(ωx+φ)+1(ω>0,|φ|<π)
∴ω
| π |
| 3 |
| π |
| 2 |
又∵g(x)=Acos(ωx+φ)-1
g(
| π |
| 3 |
| π |
| 3 |
=Acos(kπ+
| π |
| 2 |
故答案为:-1
练习册系列答案
相关题目