题目内容

函数f(x)=excosx的图象在点(0,f(0))处的切线的倾斜角为________.


分析:先求函数f(x)=excosx的导数,因为函数图象在点(0,f(0))处的切线的斜率为函数在x=0处的导数,就可求出切线的斜率,再根据切线的斜率是倾斜角的正切值,就可根据斜率的正负判断倾斜角.
解答:∵f′(x)=excosx-exsinx,
∴f′(0)=e0(cos0-sin0)=1
∴函数图象在点(0,f(0))处的切线的斜率为tanθ=1
∴函数图象在点(0,f(0))处的切线的倾斜角θ为
故答案为:
点评:本题考查了导数的运算及导数的几何意义,以及直线的倾斜角与斜率的关系,属于综合题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网