题目内容
已知函数f(x)=x3+2x2-ax+1在区间(-1,1)上恰有一个极值点,则实数a的取值范围是______.
由题意,f′(x)=3x2+4x-a,则f′(-1)f′(1)<0,解得-1<a<7,
故答案为-1<a<7.
故答案为-1<a<7.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|
题目内容
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|