题目内容
下列不等式对任意的
恒成立的是( )
| A. | B. | C. | D. |
A
解析试题分析:当x=1时,ex=ex,故A中ex>ex对任意的x∈(0,+∞)不恒成立;当x=1时,x-x2=0,故B中x-x2>0对任意的x∈(0,+∞)不恒成立;又∵y=sin在(0,
)上函数值由0递增到1,y=-x+1在(0,
)上函数值由1递减到1-
,故在区间(0,
)上存在实数x使sinx=-x+1,故C中sinx>-x+1对任意的x∈(0,+∞)不恒成立;而∵函数y=x-ln(1+x)的导函数y'=1-
在x∈(0,+∞)有,y'>0恒成立,故y=x-ln(1+x)在区间(0,+∞)上为增函数,y>y|x=0=0,故x>ln(1+x)对任意的x∈(0,+∞)恒成立,故选D.
考点:不等式恒成立问题
练习册系列答案
相关题目
设
,
,
,(e是自然对数的底数),则
| A. | B. | C. | D. |
已知
且
,则“
”是“
”的( )
| A.充分不必要条件 | B.必要不充分条件 |
| C.充要条件 | D.既不充分也不必要条件 |
设
是定义在
上的函数,若
,且对任意
,满足
,
,则
=( )
| A. | B. | C. | D. |
若
,则下列不等式成立的是( )
| A. | B. |
| C. | D. |
设
,则下列不等式成立的是( )
| A. | B. | C. | D. |
已知m>1,a=
-
,b=
-
,则以下结论正确的是( )
| A.a>b | B.a=b |
| C.a<b | D.a,b的大小不确定 |
不等式
恒成立,则实数a的取范围是( )
| A. |
| B. |
| C. |
| D. |
函数f(x)=
的定义域为( )
| A.(﹣3,0] |
| B.(﹣3,1] |
| C.(﹣∞,﹣3)∪(﹣3.0) |
| D.(﹣∞,﹣3)∪(﹣3,1) |