题目内容
已知函数().
(1)求的最小正周期;
(2)求函数在区间上的取值范围.
已知的三个顶点的坐标分别是,则的内角的平分线所在的直线方程是 .
某机械生产厂家每生产产品(百台),其总成本为(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入(万元)满足,假定生产的产品都能卖掉,请完成下列问题:
(1)写出利润函数的解析式;
(2)工厂生产多少台产品时,可使盈利最多?
已知抛物线上点到焦点的距离为4.
(1)求抛物线方程;
(2)点为准线上任意一点,为抛物线上过焦点的任意一条弦(如图),设直线,,的斜率为,,,问是否存在实数,使得恒成立.若存在,请求出的值;若不存在,请说明理由.
若,均为非零向量,且,,则,的夹角为 .
如图,在四棱锥中,底面为直角梯形,,,平面底面,为的中点,是棱上的点,,,.
(1)求证:平面平面;
(2)若为棱的中点,求异面直线与所成角的余弦值;
(3)若二面角大小为,求的长.
在中,角A、B、C所对的边分别为,且满足。
(1) 求角A的大小;
(2)若,求周长的最大值。
已知函数,若函数有个零点,则实数的取值范围是 .
一种水果自某日上市起的300天内,市场售价与上市时间的关系种植成本与时间的函数关系为若认定市场售价减去种植成本为纯收益并用h(t)表示.
(1)写出函数h(t)的解析式;
(2)问何时上市的这种水果纯收益最大?
(注:市场售价和种植成本的单位:元/102㎏,时间单位:天)