题目内容

设0<x<1,a>0且a≠,试比较|log3a(1-x)3|与|log3a(1+x)3|的大小.

解:∵0<x<1,

    ∴(1)当3a>1,即a>时,

    |log3a(1-x)3|-|log3a(1+x)3|

    =|3log3a(1-x)|-|3log3a(1+x)|

    =3[-log3a(1-x)-log3a(1+x)]

    =-3log3a(1-x2).

    ∵0<1-x2<1,∴-3log3a(1-x2)>0.

    (2)当0<3a<1,即0<a<时,

    |log3a(1-x)3|-|log3a(1+x)3|

    =3[log3a(1-x)+log3a(1+x)]

    =3log3a(1-x2)>0.

    综上所述,|log3a(1-x)3|>|log3a(1+x)3|.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网