题目内容
∫-22|x2-x|dx的值为______.
原式
=∫-20(x2-x)dx+∫01(x-x2)dx+∫12(x2-x)dx
=(
x3-
x2)|-20+(-
x3+
x2)|01+(
x3-
x2)|12
=
.
故答案为:
.
=∫-20(x2-x)dx+∫01(x-x2)dx+∫12(x2-x)dx
=(
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
=
| 17 |
| 3 |
故答案为:
| 17 |
| 3 |
练习册系列答案
相关题目