题目内容
已知函数f(x)=x-xlnx,g(x)=f(x)-xf′(a),其中f′(a)表示函数f(x)在x=a处的导数,a为正常数.
(1)求g(x)的单调区间;
(2)对任意的正实数x1,x2,且x1<x2,证明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1);
(3)对任意的n∈N*,且n≥2,证明:
+
+…+
<
.
(1)求g(x)的单调区间;
(2)对任意的正实数x1,x2,且x1<x2,证明:(x2-x1)f′(x2)<f(x2)-f(x1)<(x2-x1)f′(x1);
(3)对任意的n∈N*,且n≥2,证明:
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| lnn |
| 1-f(n+1) |
| ln2•lnn |
(1)f'(x)=-lnx,g(x)=x-xlnx+xlna,g'(x)=f'(x)-f'(a)=-lnx+lna=ln
. …(2分)
所以,x∈(0,a)时,g'(x)>0,g(x)单调递增;x∈(a,+∞)时,g'(x)<0,g(x)单调递减.
所以,g(x)的单调递增区间为(0,a],单调递减区间为[a,+∞). …(4分)
(2)证明:对任意的正实数x1,x2,且x1<x2,取a=x1,则x2∈(x1,+∞),由(1)得g(x1)>g(x2),
即g(x1)=f(x1)-x1f'(x1)>f(x2)-x2f'(x1)=g(x2),
所以,f(x2)-f(x1)<(x2-x1)f'(x1)…①; …(6分)
取a=x2,则x1∈(0,x2),由(1)得g(x1)<g(x2),即g(x1)=f(x1)-x1f'(x2)<f(x2)-x2f'(x2)=g(x2),
所以,f(x2)-f(x1)>(x2-x1)f'(x2)…②.
综合①②,得(x2-x1)f'(x2)<f(x2)-f(x1)<(x2-x1)f'(x1). …(8分)
(3)证明:对k=1,2,…,n-2,令φ(x)=
(x>1),则φ′(x)=
,
显然1<x<x+k,0<lnx<ln(x+k),所以xlnx<(x+k)ln(x+k),所以φ′(x)<0,φ(x)在(1,+∞)上单调递减.
由n-k≥2,得φ(n-k)≤φ(2),即
≤
.
所以ln2lnn≤ln(2+k)ln(n-k),k=1,2,…,n-2. …(10分)
所以2(
+
+…+
)=
+
+…+
≤
+
+…+
=2
…(12分)
又由(2)知f(n+1)-f(n)<f′(n)=-lnn,所以lnn<f(n)-f(n+1).
∴ln1+ln2+…+lnn<f(1)-f(2)+f(2)-f(3)+…+f(n)-f(n+1)=f(1)-f(n+1)=1-f(n+1).
所以,
+
+…+
<
.…(14分)
| a |
| x |
所以,x∈(0,a)时,g'(x)>0,g(x)单调递增;x∈(a,+∞)时,g'(x)<0,g(x)单调递减.
所以,g(x)的单调递增区间为(0,a],单调递减区间为[a,+∞). …(4分)
(2)证明:对任意的正实数x1,x2,且x1<x2,取a=x1,则x2∈(x1,+∞),由(1)得g(x1)>g(x2),
即g(x1)=f(x1)-x1f'(x1)>f(x2)-x2f'(x1)=g(x2),
所以,f(x2)-f(x1)<(x2-x1)f'(x1)…①; …(6分)
取a=x2,则x1∈(0,x2),由(1)得g(x1)<g(x2),即g(x1)=f(x1)-x1f'(x2)<f(x2)-x2f'(x2)=g(x2),
所以,f(x2)-f(x1)>(x2-x1)f'(x2)…②.
综合①②,得(x2-x1)f'(x2)<f(x2)-f(x1)<(x2-x1)f'(x1). …(8分)
(3)证明:对k=1,2,…,n-2,令φ(x)=
| ln(x+k) |
| lnx |
| xlnx-(x+k)ln(x+k) |
| x(x+k)(lnx)2 |
显然1<x<x+k,0<lnx<ln(x+k),所以xlnx<(x+k)ln(x+k),所以φ′(x)<0,φ(x)在(1,+∞)上单调递减.
由n-k≥2,得φ(n-k)≤φ(2),即
| lnn |
| ln(n-k) |
| ln(2+k) |
| ln2 |
所以ln2lnn≤ln(2+k)ln(n-k),k=1,2,…,n-2. …(10分)
所以2(
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| lnn |
| lnn+ln2 |
| ln2lnn |
| ln(n-1)+ln3 |
| ln3ln(n-1) |
| ln2+lnn |
| lnnln2 |
≤
| lnn+ln2 |
| ln2lnn |
| ln(n-1)+ln3 |
| ln2ln(n-1) |
| ln2+lnn |
| lnnln2 |
| ln2+ln3+…+lnn |
| ln2lnn |
又由(2)知f(n+1)-f(n)<f′(n)=-lnn,所以lnn<f(n)-f(n+1).
∴ln1+ln2+…+lnn<f(1)-f(2)+f(2)-f(3)+…+f(n)-f(n+1)=f(1)-f(n+1)=1-f(n+1).
所以,
| 1 |
| ln2 |
| 1 |
| ln3 |
| 1 |
| lnn |
| 1-f(n+1) |
| ln2•lnn |
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|