题目内容
数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn, an2成等差数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
}的前n项和.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)求数列{
| 2 | an•an+1 |
分析:(Ⅰ)由题意可得2Sn=an+an2,结合数列的递推公式an=Sn-Sn-1可得an-an-1=1,结合等差数列的通项公式可求
(II)由
=
=
-
,考虑利用裂项求和即可求解
(II)由
| 1 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:(Ⅰ)解:由已知:对于,n∈N*,总有2Sn=an+an2 ①成立
∴2Sn-1=an-1+an-12 (n≥2)②
①-②得2an=an+an2-an-1-an-12
∴an-an-1=(an+an-1)(an-an-1)
∵an>0
∴an-an-1=1 (n≥2)
∴数列an是公差为1的等差数列
又n=1时,2S1=a1+a12,解得a1=1
∴an=n.
(II)∵
=
=
-
∴Sn=1-
+
-
+…+
-
=1-
=
数列{
}的前n项和为
∴2Sn-1=an-1+an-12 (n≥2)②
①-②得2an=an+an2-an-1-an-12
∴an-an-1=(an+an-1)(an-an-1)
∵an>0
∴an-an-1=1 (n≥2)
∴数列an是公差为1的等差数列
又n=1时,2S1=a1+a12,解得a1=1
∴an=n.
(II)∵
| 1 |
| anan+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴Sn=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
| n |
| n+1 |
数列{
| 2 |
| an•an+1 |
| 2n |
| n+1 |
点评:本题主要考查了利用数列的递推公式构造等差数列求解通项及数列的裂项求和,解题的关键是熟练应用基本公式
练习册系列答案
相关题目