题目内容
已知在数列{an}中,a1=1,当n≥2时,其前n项和Sn满足Sn2=an(Sn-
).
(Ⅰ) 求Sn的表达式;
(Ⅱ) 设bn=
,求数列{bn}的前n项和Tn.
| 1 |
| 2 |
(Ⅰ) 求Sn的表达式;
(Ⅱ) 设bn=
| Sn |
| 2n+1 |
(Ⅰ)当n≥2时,an=Sn-Sn-1代入得:2SnSn-1+Sn-Sn-1=0?
-
=2,
∴
=2n-1?Sn=
(6分)
(Ⅱ)bn=
=
=
(
-
)
∴Tn=
[(
-
)+(
-
)+…+(
-
)]=
.(13分)
| 1 |
| Sn |
| 1 |
| Sn-1 |
∴
| 1 |
| Sn |
| 1 |
| 2n-1 |
(Ⅱ)bn=
| Sn |
| 2n+1 |
| 1 |
| (2n-1)(2n+1) |
| 1 |
| 2 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 1 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2n-1 |
| 1 |
| 2n+1 |
| n |
| 2n+1 |
练习册系列答案
相关题目