题目内容
已知在数列{an}中,a1=| 1 |
| 2 |
(1)证明:数列{
| n+1 |
| n |
(2)令bn=(n+1)(1-an),记数列{bn}的前n项和为Tn.
①求证:当n≥2时,Tn2>2(
| T2 |
| 2 |
| T3 |
| 3 |
| Tn |
| n |
②)求证:当n≥2时,bn+1+bn+2+…+b2n<
| 4 |
| 5 |
| 1 |
| 2n+1 |
分析:(1)由题设知Sn=n2(Sn-Sn-1)-n(n-1),(n2-1)Sn-n2S=n(n-1),两边同除以n(n-1),得
Sn-
Sn-1=1,由此能够证明数列{
Sn}是等差数列;
(2)由
Sn=n,Sn=
代入Sn=n2an-n(n-1),得an=1-
,故bn=
,Tn=1+
+
++
.
①bn=
,bn=Tn-Tn-1=
,即Tn-
=Tn-1,平方Tn2-
+
=Tn-12∴Tn2-Tn-12=
-
,
再由叠加法能够得到当n≥2时,Tn2>2(
+
+…+
);
②当n=2时,b3+b4=
+
<
-
即n=2时命题成立,由数学归纳法能够证明对于任意n≥2,bn+1+bn+2++b2n<
-
.
| n+1 |
| n |
| n |
| n-1 |
| n+1 |
| n |
(2)由
| n+1 |
| n |
| n2 |
| n+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
①bn=
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
| 2Tn |
| n |
| 1 |
| n2 |
| 2Tn |
| n |
| 1 |
| n2 |
再由叠加法能够得到当n≥2时,Tn2>2(
| T2 |
| 2 |
| T3 |
| 3 |
| Tn |
| n |
②当n=2时,b3+b4=
| 1 |
| 3 |
| 1 |
| 4 |
| 4 |
| 5 |
| 1 |
| 5 |
| 4 |
| 5 |
| 1 |
| 2n+1 |
解答:解:(1)由条件可得Sn=n2(Sn-Sn-1)-n(n-1),(n2-1)Sn-n2S=n(n-1)
两边同除以n(n-1),得:
Sn-
Sn-1=1
所以:数列{
Sn}成等差数列,且首项和公差均为(14分)
(2)由(1)可得:
Sn=n,Sn=
,代入Sn=n2an-n(n-1)可得an=1-
,所以bn=
,Tn=1+
+
++
.(6分)
①bn=
当n≥2时,bn=Tn-Tn-1=
,即Tn-
=Tn-1
平方则Tn2-
+
=Tn-12∴Tn2-Tn-12=
-
叠加得Tn2-1=2(
+
++
)-(
+
++
)∴Tn2=2(
+
++
)+1-(
++
)
又
+
++
<
+
++
=1-
+
-
++
-
=1-
<1∴Tn2>2(
+
++
)(9分)
②当n=2时,b3+b4=
+
<
-
即n=2时命题成立
假设n=k(k≥2)时命题成立,即
+
++
<
-
当n=k+1时,
+
++
+
+
<
-
-
+
+
=
-
<
-
即n=k+1时命题也成立
综上,对于任意n≥2,bn+1+bn+2++b2n<
-
(14分)
两边同除以n(n-1),得:
| n+1 |
| n |
| n |
| n-1 |
所以:数列{
| n+1 |
| n |
(2)由(1)可得:
| n+1 |
| n |
| n2 |
| n+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
①bn=
| 1 |
| n |
| 1 |
| n |
| 1 |
| n |
平方则Tn2-
| 2Tn |
| n |
| 1 |
| n2 |
| 2Tn |
| n |
| 1 |
| n2 |
叠加得Tn2-1=2(
| T2 |
| 2 |
| T3 |
| 3 |
| Tn |
| n |
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| T2 |
| 2 |
| T3 |
| 3 |
| Tn |
| n |
| 1 |
| 22 |
| 1 |
| n2 |
又
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| n |
| T2 |
| 2 |
| T3 |
| 3 |
| Tn |
| n |
②当n=2时,b3+b4=
| 1 |
| 3 |
| 1 |
| 4 |
| 4 |
| 5 |
| 1 |
| 5 |
假设n=k(k≥2)时命题成立,即
| 1 |
| k+1 |
| 1 |
| k+2 |
| 1 |
| 2k |
| 4 |
| 5 |
| 1 |
| 2k+1 |
当n=k+1时,
| 1 |
| k+2 |
| 1 |
| k+3 |
| 1 |
| 2k |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
| 4 |
| 5 |
| 1 |
| 2k+1 |
| 1 |
| k+1 |
| 1 |
| 2k+1 |
| 1 |
| 2k+2 |
=
| 4 |
| 5 |
| 1 |
| 2k+2 |
| 4 |
| 5 |
| 1 |
| 2k+3 |
综上,对于任意n≥2,bn+1+bn+2++b2n<
| 4 |
| 5 |
| 1 |
| 2n+1 |
点评:本题考查数列知识的综合运用,解题时要认真审题,注意挖掘题设中的隐含条件.
练习册系列答案
相关题目