题目内容
14.设直线l与抛物线y2=4x相交于A、B两点,与圆(x-5)2+y2=r2(r>0)相切于点M,且M为线段AB的中点,若这样的直线l恰有4条,则r的取值范围是( )| A. | (1,3) | B. | (1,4) | C. | (2,3) | D. | (2,4) |
分析 先确定M的轨迹是直线x=3,代入抛物线方程可得y=±2$\sqrt{3}$,所以交点与圆心(5,0)的距离为4,即可得出结论.
解答 解:设A(x1,y1),B(x2,y2),M(x0,y0),
斜率存在时,设斜率为k,则y12=4x1,y22=4x2,
则$\left\{\begin{array}{l}{{{y}_{1}}^{2}=4{x}_{1}}\\{{{y}_{2}}^{2}=4{x}_{2}}\end{array}$,相减,得(y1+y2)(y1-y2)=4(x1-x2),
当l的斜率存在时,利用点差法可得ky0=2,
因为直线与圆相切,所以$\frac{{y}_{0}}{{x}_{0}-5}$=-$\frac{1}{k}$,所以x0=3,
即M的轨迹是直线x=3.
将x=3代入y2=4x,得y2=12,∴-2$\sqrt{3}<{y}_{0}<2\sqrt{3}$,
∵M在圆上,∴(x0-5)2+y02=r2,∴r2=y02+4<12+4=16,
∵直线l恰有4条,∴y0≠0,∴4<r2<16,
故2<r<4时,直线l有2条;
斜率不存在时,直线l有2条;
所以直线l恰有4条,2<r<4,
故选:D.
点评 本题考查直线与抛物线、圆的位置关系,考查点差法,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目
5.要得到函数y=sin(4x-$\frac{π}{3}$)的图象,只需要将函数y=sin4x的图象( )个单位.
| A. | 向左平移$\frac{π}{12}$ | B. | 向右平移$\frac{π}{12}$ | C. | 向左平移$\frac{π}{3}$ | D. | 向右平移$\frac{π}{3}$ |
2.一条光线从点(-2,-3)射出,经y轴反射后与圆(x+3)2+(y-2)2=1相切,则反射光线所在直线的斜率为( )
| A. | -$\frac{5}{3}$或-$\frac{3}{5}$ | B. | -$\frac{3}{2}$或-$\frac{2}{3}$ | C. | -$\frac{5}{4}$或-$\frac{4}{5}$ | D. | -$\frac{4}{3}$或-$\frac{3}{4}$ |
9.过双曲线x2-$\frac{{y}^{2}}{3}$=1的右焦点且与x轴垂直的直线,交该双曲线的两条渐近线于A、B两点,则|AB|=( )
| A. | $\frac{4\sqrt{3}}{3}$ | B. | 2$\sqrt{3}$ | C. | 6 | D. | 4$\sqrt{3}$ |
3.若集合A={x|-5<x<2},B={x|-3<x<3},则A∩B=( )
| A. | {x|-3<x<2} | B. | {x|-5<x<2} | C. | {x|-3<x<3} | D. | {x|-5<x<3} |