题目内容
已知数列{an}中,a1=1,an=
an-1+n(n≥2,n∈N*).且bn=
+λ为等比数列,
(Ⅰ)求实数λ及数列{bn}、{an}的通项公式;
(Ⅱ)若Sn为{an}的前n项和,求Sn;
(Ⅲ)令cn=
,数列{cn}前n项和为Tn.求证:对任意n∈N*,都有Tn<3.
| 2n |
| n-1 |
| an |
| n |
(Ⅰ)求实数λ及数列{bn}、{an}的通项公式;
(Ⅱ)若Sn为{an}的前n项和,求Sn;
(Ⅲ)令cn=
| bn |
| (bn-1)2 |
(Ⅰ)当n≥2,n∈N*时,an=
an-1+n,
∴
=2
+1,即
+1=2(
+1),故λ=1时
有bn=2bn-1,而b1=
+1=2≠0
bn=2•2n-1=2n,从而an=n•2n-n
(Ⅱ)Sn=1•2+2•22+…+n•2n-(1+2+…+n)
记Rn=1•2+2•22+…+n•2n
则2Rn=1•22+2•23+…+n•2n+1
相减得:-Rn=2+22+23+…+2n-n•2n+1=
-n•2n+1
∴Sn=(n-1)2n+1-
(Ⅲ)cn=
<
=
=
-
(n≥2)
n≥2时,Tn<
+
-
+…+
-
(n≥2)
=2+1-
<3
而T1=
=2<3
∵?n∈N*,7n<3.
| 2n |
| n-1 |
∴
| an |
| n |
| an-1 |
| n-1 |
| an |
| n |
| an-1 |
| n-1 |
有bn=2bn-1,而b1=
| a1 |
| 1 |
bn=2•2n-1=2n,从而an=n•2n-n
(Ⅱ)Sn=1•2+2•22+…+n•2n-(1+2+…+n)
记Rn=1•2+2•22+…+n•2n
则2Rn=1•22+2•23+…+n•2n+1
相减得:-Rn=2+22+23+…+2n-n•2n+1=
| 2(1-2n) |
| 1-2 |
∴Sn=(n-1)2n+1-
| n2+n-4 |
| 2 |
(Ⅲ)cn=
| 2n |
| (2n-1)2 |
| 2n |
| (2n-1)(2n-2)2 |
=
| 2n-1 |
| (2n-1)(2n-1-1)2 |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
n≥2时,Tn<
| 21 |
| 21-1 |
| 1 |
| 2-1 |
| 1 |
| 22-1 |
| 1 |
| 2n-1-1 |
| 1 |
| 2n-1 |
=2+1-
| 1 |
| 2n-1 |
而T1=
| 2 |
| 2-1 |
∵?n∈N*,7n<3.
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|