题目内容
等差数列{an}中,a2=4,S6=42.
(1)求数列的通项公式an;
(2)设bn=
,Tn=b1+b2+…+bn,求T6.
(1)求数列的通项公式an;
(2)设bn=
| 2 |
| (n+1)an |
(1)设数列等差数列{an}的公差为d,
由题意得
?
?an=2+(n-1)2=2n;
(2)将an=2n代入得:bn=
=
=
-
,
则T6=b1+b2+b3+…+b6
=(1-
)+(
-
)+…+(
-
)
=1-
=
.
由题意得
|
|
(2)将an=2n代入得:bn=
| 2 |
| (n+1)2n |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
则T6=b1+b2+b3+…+b6
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 7 |
=1-
| 1 |
| 7 |
=
| 6 |
| 7 |
练习册系列答案
相关题目