ÌâÄ¿ÄÚÈÝ
17£®£¨1£©ÒÑÖª¹ØÓÚxµÄ¶þ´Îº¯Êýf£¨x£©=ax2-4bx+1£®É輯ºÏP={1£¬2£¬3}ºÍQ={-1£¬1£¬2£¬3£¬4}£¬·Ö±ð´Ó¼¯ºÏPºÍQÖÐËæ»úȡһ¸öÊý×÷ΪaºÍb£¬Çóº¯Êýy=f£¨x£©ÔÚÇø¼ä[1£¬+¡Þ£©ÉÏÊÇÔöº¯ÊýµÄ¸ÅÂÊ£»£¨2£©ÔÚÇø¼ä[1£¬5]ºÍ[2£¬4]ÉÏ·Ö±ðȡһ¸öÊý£¬¼ÇΪa£¬b£¬Çó·½³Ì$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1±íʾ½¹µãÔÚxÖáÉÏÇÒÀëÐÄÂÊСÓÚ$\frac{\sqrt{3}}{2}$µÄÍÖÔ²µÄ¸ÅÂÊ£®
·ÖÎö £¨1£©ÀûÓÃÁоٷ¨È·¶¨»ù±¾Ê¼þ£¬¼´¿ÉÇóº¯Êýy=f£¨x£©ÔÚÇø¼ä[1£¬+¡Þ£©ÉÏÊÇÔöº¯ÊýµÄ¸ÅÂÊ£»
£¨2£©·½³Ì$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1±íʾ½¹µãÔÚxÖáÉÏÇÒÀëÐÄÂÊСÓÚ$\frac{\sqrt{3}}{2}$µÄÍÖÔ²£¬¹Ê$\left\{\begin{array}{l}{{a}^{2}£¾{b}^{2}}\\{\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}£¼\frac{\sqrt{3}}{2}}\end{array}\right.$£¬»¯¼òµÃ$\left\{\begin{array}{l}{a£¾b}\\{a£¼2b}\end{array}\right.$£¬ÓÖa¡Ê[1£¬5]£¬b¡Ê[2£¬4]£¬»³öÂú×ã²»µÈʽ×éµÄÆ½ÃæÇøÓò£¬ÀûÓÃÃæ»ý±È£¬¼´¿ÉÇó·½³Ì$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1±íʾ½¹µãÔÚxÖáÉÏÇÒÀëÐÄÂÊСÓÚ$\frac{\sqrt{3}}{2}$µÄÍÖÔ²µÄ¸ÅÂÊ£®
½â´ð ½â£º£¨1£©¡ßº¯Êýf£¨x£©=ax2-4bx+1µÄͼÏóµÄ¶Ô³ÆÖáΪֱÏßx=$\frac{2b}{a}$£¬ÒªÊ¹f£¨x£©=ax2-4bx+1ÔÚÇø¼ä[1£¬+¡Þ£©ÉÏΪÔöº¯Êý£¬µ±ÇÒ½öµ±a£¾0ÇÒ$\frac{2b}{a}$¡Ü1£¬¼´2b¡Üa£®¡£¨2·Ö£©
Èôa=1£¬Ôòb=-1£»
Èôa=2£¬Ôòb=-1»ò1£»
Èôa=3£¬Ôòb=-1»ò1£®
¡àʼþ°üº¬»ù±¾Ê¼þµÄ¸öÊýÊÇ1+2+2=5£®¡£¨4·Ö£©
¶øÂú×ãÌõ¼þµÄÊý¶Ô£¨a£¬b£©¹²ÓÐ3¡Á5=15¸ö
¡àËùÇóʼþµÄ¸ÅÂÊΪ$\frac{5}{15}$=$\frac{1}{3}$£®¡£¨6·Ö£©
£¨2£©·½³Ì$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1±íʾ½¹µãÔÚxÖáÉÏÇÒÀëÐÄÂÊСÓÚ$\frac{\sqrt{3}}{2}$µÄÍÖÔ²£¬¹Ê$\left\{\begin{array}{l}{{a}^{2}£¾{b}^{2}}\\{\frac{\sqrt{{a}^{2}-{b}^{2}}}{a}£¼\frac{\sqrt{3}}{2}}\end{array}\right.$¡£¨8·Ö£©
»¯¼òµÃ$\left\{\begin{array}{l}{a£¾b}\\{a£¼2b}\end{array}\right.$
ÓÖa¡Ê[1£¬5]£¬b¡Ê[2£¬4]£¬»³öÂú×ã²»µÈʽ×éµÄÆ½ÃæÇøÓò£¬ÈçͼÒõÓ°²¿·ÖËùʾ£¬
¡£¨10·Ö£©
ÒõÓ°²¿·ÖµÄÃæ»ýΪ$\frac{15}{4}$£¬¹ÊËùÇóµÄ¸ÅÂÊP=$\frac{15}{32}$£®¡£¨12·Ö£©
µãÆÀ ±¾Ì⿼²é¸ÅÂʵļÆË㣬¿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬Çø·ÖÁ½ÖÖÀàÐÍÊǹؼü£®
| A£® | $\frac{1}{2}$ | B£® | $\frac{{\sqrt{2}}}{2}$ | C£® | $-\frac{{\sqrt{2}}}{2}$ | D£® | $-\frac{1}{2}$ |
| A£® | ×ø±êÔµã¶Ô³Æ | B£® | xÖá¶Ô³Æ | C£® | yÖá¶Ô³Æ | D£® | Ö±Ïßy=x¶Ô³Æ |