题目内容
设
(2x-1)dx=a,则二项式(x+
)4的展开式中的常数项为______.
| ∫ | 20 |
| a |
| x |
∵a=
(2x-1)dx=(x2-x)
=2,则二项式(x+
)4=(x+
)4,
故它的展开式的通项公式为Tr+1=
•x4-r•2r•x-r=2r•
•x4-2r,
令4-2r=0,可得 r=2,故展开式的常数项为 22•
=24,
故答案为 24.
| ∫ | 20 |
| | | 20 |
| a |
| x |
| 2 |
| x |
故它的展开式的通项公式为Tr+1=
| C | r4 |
| C | r4 |
令4-2r=0,可得 r=2,故展开式的常数项为 22•
| C | 24 |
故答案为 24.
练习册系列答案
相关题目