题目内容

7.已知正四棱柱ABCD-A1B1C1D1中,AA1=4,AB=2,E是AA1的中点,则异面直线D1C与BE所成角的余弦值为(  )
A.$\frac{1}{5}$B.$\frac{3\sqrt{10}}{10}$C.$\frac{\sqrt{10}}{10}$D.$\frac{3}{5}$

分析 首先把空间问题转化为平面问题,通过连结A1B得到:A1B∥CD1进一步解三角形,利用余弦定理求出结果.

解答 解:在正四棱柱ABCD-A1B1C1D1中,
连结A1B,根据四棱柱的性质A1B∥CD1
∵AA1=4,AB=2,∴AE=2,A1B=2$\sqrt{5}$,BE=2$\sqrt{2}$
在△A1BE中,利用余弦定理求得:cos∠A1BE=$\frac{3\sqrt{10}}{10}$
即异面直线BE与CD1所成角的余弦值为:$\frac{3\sqrt{10}}{10}$.
故选:B.

点评 本题考查的知识点:异面直线的夹角,余弦定理的应用,及相关的运算.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网