题目内容
【题目】根据题意解答
(1)已知a为常数,且0<a<1,函数f(x)=(1+x)a﹣ax,求函数f(x)在x>﹣1上的最大值;
(2)若a,b均为正实数,求证:ab+ba>1.
【答案】
(1)解:由f(x)=(1+x)a﹣ax,求导f′(x)=a(1+x)a﹣1﹣a=a[(1+x)a﹣1﹣1],
当﹣1<x<0时,f′(x)>0,当x>0,f′(x)<0,
∴f(x)在x=0处取极大值,也是最大值f(0)=1,
∴f(x)的最大值为1;
(2)证明:①当a,b中有一个大于1时,不妨设a≥1,
ab+ba>ab>1,
②当a,b均属于(0,1),设a=
,b=
,(m,n>0),
则ab=
=
≥
=
,
同理可知:ba≥
,
∴ab+ba>
+
=
>1,
∴ab+ba>1.
【解析】(1)由f′(x)=a(1+x)a﹣1﹣a=a[(1+x)a﹣1﹣1],当﹣1<x<0时,f′(x)>0,当x>0,f′(x)<0,f(x)在x=0处取极大值,也是最大值f(0)=1;(2)①当a,b中有一个大于1时,不妨设a≥1,ab+ba>ab>1,②当a,b均属于(0,1),设a=
,b=
,(m,n>0),则ab=
=
≥
=
,同理ba≥
,即可证明ab+ba>1.
【考点精析】通过灵活运用函数的最值及其几何意义,掌握利用二次函数的性质(配方法)求函数的最大(小)值;利用图象求函数的最大(小)值;利用函数单调性的判断函数的最大(小)值即可以解答此题.
练习册系列答案
相关题目