题目内容
已知0<x<
<y<π且sin(x+y)=
(Ⅰ)若tg
=
,分别求cosx及cosy的值;
(Ⅱ)试比较siny与sin(x+y)的大小,并说明理由.
| π |
| 2 |
| 5 |
| 13 |
(Ⅰ)若tg
| x |
| 2 |
| 1 |
| 2 |
(Ⅱ)试比较siny与sin(x+y)的大小,并说明理由.
(Ⅰ)∵0<x<
<y<π,tan
=
,且0<
<
,
∴cos=
=
,sin
=
,
则cosx=2cos2
-1=
,sinx=
,
又sin(x+y)=
,
<x+y<
,
∴cos(x+y)=-
,
∴cosy=cos[(x+y)-x]
=cos(x+y)cosx+sin(x+y)sinx
=-
•
+
•
=-
;
(Ⅱ)∵0<x<
<y<π,
∴
<x+y<
,
<y<x+y<
,
又y=sinx在[
,
]上为减函数,
∴siny>sin(x+y).
| π |
| 2 |
| x |
| 2 |
| 1 |
| 2 |
| x |
| 2 |
| π |
| 4 |
∴cos=
| x |
| 2 |
| 2 | ||
|
| x |
| 2 |
| 1 | ||
|
则cosx=2cos2
| x |
| 2 |
| 3 |
| 5 |
| 4 |
| 5 |
又sin(x+y)=
| 5 |
| 13 |
| π |
| 2 |
| 3π |
| 2 |
∴cos(x+y)=-
| 12 |
| 13 |
∴cosy=cos[(x+y)-x]
=cos(x+y)cosx+sin(x+y)sinx
=-
| 12 |
| 13 |
| 3 |
| 5 |
| 5 |
| 13 |
| 4 |
| 5 |
| 16 |
| 65 |
(Ⅱ)∵0<x<
| π |
| 2 |
∴
| π |
| 2 |
| 3π |
| 2 |
| π |
| 2 |
| 3π |
| 2 |
又y=sinx在[
| π |
| 2 |
| 3π |
| 2 |
∴siny>sin(x+y).
练习册系列答案
相关题目