题目内容
已知数列{an}中,a1=
,对一切n∈N+,点(n,2an+1-an)在直线y=x上,
(Ⅰ)令bn=an+1-an-1,求证数列{bn}是等比数列,并求通项bn;
(Ⅱ)求数列{an}的通项公式an;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在常数λ,使得数列{
}为等差数列?若存在,试求出λ若不存在,则说明理由.
| 1 |
| 2 |
(Ⅰ)令bn=an+1-an-1,求证数列{bn}是等比数列,并求通项bn;
(Ⅱ)求数列{an}的通项公式an;
(Ⅲ)设Sn、Tn分别为数列{an}、{bn}的前n项和,是否存在常数λ,使得数列{
| Sn+λTn |
| n |
( I)由已知得 a1=
,2an+1=an+n,∵a2=
,a2-a1-1=
-
-1=-
,
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴
=
=
=
=
.
数列{bn}是以-
为首项以
为公比的等比数列,bn=-
×(
)n-1.
(Ⅱ)因为bn=-
×(
)n-1,
∴an+1-an=1-
×(
)n-1,a2-a1=1-
×
;a3-a2=1-
×
,…,an+1-an=1-
×(
)n-1,
将以上各式相加得:an-a1=n+1-
(
+
+…+
),
an=n-
-
×
=
+n-2.
(Ⅲ)存在λ=2,使得数列{
}为等差数列,
∵Sn=a1+a2+…+an
=3(
+
+…+
)+(1+2+…+n)-2n
=3×
+
-2n
=3(1-
)+
=-
+
+3.
Tn=b1+b2+…+bn=
=-
(1-
)=-
+
.
数列{
}是等差数列的充要条件是
=An+B,(A、B是常数)
即Sn+λTn=An2+Bn,
又Sn+λTn=-
+
+3+λ(-
+
)=
+3-
+λ(-
+
)
则3-
+λ(-
+
)=0,当λ=2时,上式成立.
所以存在常数λ=2,使得数列{
}为等差数列.
| 1 |
| 2 |
| 3 |
| 4 |
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
又bn=an+1-an-1,bn+1=an+2-an+1-1,
∴
| bn+1 |
| bn |
| an+1-an-1 |
| an+2-an+1-1 |
| ||||
| an+1-an-1 |
| ||
| an+1-an-1 |
| 1 |
| 2 |
数列{bn}是以-
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
| 1 |
| 2 |
(Ⅱ)因为bn=-
| 3 |
| 4 |
| 1 |
| 2 |
∴an+1-an=1-
| 3 |
| 4 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 22 |
| 3 |
| 4 |
| 1 |
| 2 |
将以上各式相加得:an-a1=n+1-
| 3 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
an=n-
| 1 |
| 2 |
| 3 |
| 2 |
| ||||
1-
|
| 3 |
| 2n |
(Ⅲ)存在λ=2,使得数列{
| Sn+λTn |
| n |
∵Sn=a1+a2+…+an
=3(
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
=3×
| ||||
1-
|
| n(n+1) |
| 2 |
=3(1-
| 1 |
| 2n |
| n2-3n |
| 2 |
| 3 |
| 2n |
| n2-3n |
| 2 |
Tn=b1+b2+…+bn=
-
| ||||
1-
|
| 3 |
| 2 |
| 1 |
| 2n |
| 3 |
| 2 |
| 3 |
| 2n+1 |
数列{
| Sn+λTn |
| n |
| Sn+λTn |
| n |
即Sn+λTn=An2+Bn,
又Sn+λTn=-
| 3 |
| 2n |
| n2-3n |
| 2 |
| 3 |
| 2 |
| 3 |
| 2n+1 |
| n2-3n |
| 2 |
| 3 |
| 2n |
| 3 |
| 2 |
| 3 |
| 2n+1 |
则3-
| 3 |
| 2n |
| 3 |
| 2 |
| 3 |
| 2n+1 |
所以存在常数λ=2,使得数列{
| Sn+λTn |
| n |
练习册系列答案
相关题目
已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为( )
A、
| ||
B、
| ||
C、
| ||
D、
|