题目内容
等差数列{an}中,前n项和Sn=
,前m项和Sm=
(m≠n),则Sm+n( )
| n |
| m |
| m |
| n |
| A.小于4 | B.等于4 |
| C.大于4 | D.大于2且小于4 |
设等差数列的公差为d,
则Sn=
=
=
,
同理Sm=
=
,
则Sm+n=
=
+
=
+
+
+
=
+
+mnd,
因为m,n为正整数,且m≠n,令n>m,m=1,n=2,
将m=1,n=2代入Sn中得到2a1+d=2;代入Sm中得到a1=
,
解得d=1,
则Sm+n≥2+
+2=
>4.
故选C
则Sn=
| n(a1+an) |
| 2 |
| n[2a1+(n-1)d] |
| 2 |
| n |
| m |
同理Sm=
| m[2a1+(m-1)d] |
| 2 |
| m |
| n |
则Sm+n=
| (m+n)[2a1+(m+n-1)d] |
| 2 |
| m[2a1+(m+n-1)d] |
| 2 |
| n[2a1+(m+n-1)d] |
| 2 |
=
| n[2a1+(n-1)d] |
| 2 |
| mnd |
| 2 |
| m[2a1+(m-1)d] |
| 2 |
| mnd |
| 2 |
=
| n |
| m |
| m |
| n |
因为m,n为正整数,且m≠n,令n>m,m=1,n=2,
将m=1,n=2代入Sn中得到2a1+d=2;代入Sm中得到a1=
| 1 |
| 2 |
解得d=1,
则Sm+n≥2+
| 1 |
| 2 |
| 9 |
| 2 |
故选C
练习册系列答案
相关题目