题目内容
(1)已知a=
,b=
,求[a-
b(ab-2)-
(a-1)-
]2的值;
(2)计算
lg8+lg25+lg2•lg50+lg25的值.
| 1 | ||
|
| 1 | |||
|
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
(2)计算
| 2 |
| 3 |
分析:(1)先利用有理指数幂的运算性质化简,然后代入a,b的值计算;
(2)直接利用对数的运算性质化简求值.
(2)直接利用对数的运算性质化简求值.
解答:解:(1)[a-
b(ab-2)-
(a-1)-
]2
=[a-
a
a-
b2]2=(a-
+
-
b2)2
=(a-
b2)2=a-
b4.
∵a=
,b=
,
∴原式=(
)-
(
)4=(2-
)-
(2-
)4=20=1;
(2)
lg8+lg25+lg2•lg50+lg25
=2lg2+lg25+lg2(1+lg5)+2lg5
=2(lg2+lg5)+lg25+lg2+lg2•lg5
=2+lg5(lg5+lg2)+lg2
=2+lg5+lg2=3.
| 3 |
| 2 |
| 1 |
| 2 |
| 2 |
| 3 |
=[a-
| 3 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
| 3 |
| 2 |
| 2 |
| 3 |
| 1 |
| 2 |
=(a-
| 4 |
| 3 |
| 8 |
| 3 |
∵a=
| 1 | ||
|
| 1 | |||
|
∴原式=(
| 1 | ||
|
| 8 |
| 3 |
| 1 | |||
|
| 1 |
| 2 |
| 8 |
| 3 |
| 1 |
| 3 |
(2)
| 2 |
| 3 |
=2lg2+lg25+lg2(1+lg5)+2lg5
=2(lg2+lg5)+lg25+lg2+lg2•lg5
=2+lg5(lg5+lg2)+lg2
=2+lg5+lg2=3.
点评:本题考查了有理指数幂的化简与求值,考查了对数的运算性质,关键是对运算性质的记忆,是基础题.
练习册系列答案
相关题目