题目内容
【题目】如图,已知四棱锥
,平面
平面
,四边形
是菱形,
.
![]()
(1)若
,证明:
;
(2)若
,求平面
与平面
所成锐二面角的余弦值.
【答案】(1)证明见解析;(2)
.
【解析】
(1)根据题意,取
中点为
,通过证明
平面
进而推证线线垂直;
(2)以
对角线的交点为
,建立直角坐标系,求出两个平面的法向量,通过求解法向量的夹角,进而求得二面角的大小.
(1)取
的中点
,连接
,
.如下图所示:
![]()
∵
,∴
.
∵四边形
是菱形,且
,
∴
,∴
.
∵
,∴
平面
,
∴
.
又在菱形
中,
,
∴
.
(2)设
与
交于点
,建立如图所示的空间直角坐标系
,
![]()
不妨设
,
则
,
.
,
.
由(1)知
,
∵平面
平面
,
∴
平面
.
则
,
,
,
,
,
设平面
的法向量为![]()
,
∵
,∴
,
取
,得![]()
.
设平面
的法向量为![]()
,
∵
,∴
,
取
,得![]()
.
设平面
与平面
所成锐二面角为
,
则
.
故平面
与平面
所成锐二面角的余弦值为
.
练习册系列答案
相关题目
【题目】某教师调查了
名高三学生购买的数学课外辅导书的数量,将统计数据制成如下表格:
男生 | 女生 | 总计 | |
购买数学课外辅导书超过 |
|
|
|
购买数学课外辅导书不超过 |
|
|
|
总计 |
|
|
|
(Ⅰ)根据表格中的数据,是否有
的把握认为购买数学课外辅导书的数量与性别相关;
(Ⅱ)从购买数学课外辅导书不超过
本的学生中,按照性别分层抽样抽取
人,再从这
人中随机抽取
人询问购买原因,求恰有
名男生被抽到的概率.
附:
,
.
|
|
|
|
|
|
|
|
|
|
|
|
【题目】有两种理财产品
和
,投资这两种理财产品一年后盈亏的情况如下(每种理财产品的不同投资结果之间相互独立):
产品
:
投资结果 | 获利 | 不赔不赚 | 亏损 |
概率 |
|
|
|
产品
:
投资结果 | 获利 | 不赔不赚 | 亏损 |
概率 |
|
|
|
注:
,![]()
(1)若甲、乙两人分别选择了产品
投资,一年后他们中至少有一人获利的概率大于
,求实数
的取值范围;
(2)若丙要将20万元人民币投资其中一种产品,以一年后的投资收益的期望值为决策依据,则丙选择哪种产品投资较为理想.