题目内容
在某次测验中,有6位同学的平均成绩为75分。用xn表示编号为n(n=1,2,…,6)的同学所得成绩,且前5位同学的成绩如下:
| 编号n | 1 | 2 | 3 | 4 | 5 |
| 成绩xn | 70 | 76 | 72 | 70 | 72 |
(1)求第6位同学的成绩x6,及这6位同学成绩的标准差s;
(2)从前5位同学中,随机地选2位同学,求恰有1位同学成绩在区间(68,75)中的概率。
![]()
解:(1)![]()
………………3分
,
………………6分
(2)从5位同学中随机选取2位同学,共有如下10种不同的取法:
{1,2},{1,3},{1,4},{1,5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5}
,
选出的2位同学中,恰有1位同学的成绩位于(68,75)的取
法共有如下4种取法:
{1,2},{2,3},{2,4},{2,5},故所求概率为
………………12分
练习册系列答案
相关题目