题目内容

设a、b、c是三个实数,则“b2=ac”是“a、b、c成等比数列”的


  1. A.
    充分非必要条件
  2. B.
    必要非充分条件
  3. C.
    充要条件
  4. D.
    既非充分也非必要条件
B
分析:先证明必要性,由a、b、c成等比数列,根据等比数列的性质可得b2=ac;再证充分性,可以举一个反例,满足b2=ac,但a、b、c不成等比数列,从而得到正确的选项.
解答:若a、b、c成等比数列,
根据等比数列的性质可得:b2=ac;
若b=0,a=2,c=0,满足b2=ac,但a、b、c显然不成等比数列,
则“b2=ac”是“a、b、c成等比数列”的必要非充分条件.
故选B
点评:本题主要考查等比数列的等比中项的性质和充要条件的判断.在应用a,b,c成等比数列时,一定要考虑a,b,c都等于0的特殊情况,这是解题的关键所在.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网