题目内容
设函数f(x)=sin(
x+?)(0<?<π),如果f(x)+f'(x)为奇函数,则?=______.
| 3 |
f′(x)=
cos(
x+φ),
F(x)=f(x)+f'(x)
=
cos(
x+φ)+sin(
x+?)
=2sin(
x+
+?),
∵F(x)为奇函数,∴F(0)=0,sin(
+?)=0,又0<?<π,
∴
+?∈(
,
),
+?=π,φ=
故答案为:
.
| 3 |
| 3 |
F(x)=f(x)+f'(x)
=
| 3 |
| 3 |
| 3 |
=2sin(
| 3 |
| π |
| 3 |
∵F(x)为奇函数,∴F(0)=0,sin(
| π |
| 3 |
∴
| π |
| 3 |
| π |
| 3 |
| 4π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
故答案为:
| 2π |
| 3 |
练习册系列答案
相关题目
设函数f(x)=|sin(x+
)|(x∈R),则f(x)( )
| π |
| 3 |
A、在区间[
| ||||
B、在区间[-π,-
| ||||
C、在区间[
| ||||
D、在区间[
|