题目内容
已知a,b,c∈R+,a+b+c=1,求证:
+
+
≥9.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
证明:由题意知
+
+
=
+
+
=3+(
+
)+(
+
)+(
+
)
∴
+
≥2,
+
≥2,
+
≥2.
当且仅当a=b=c时,取等号,
∴
+
+
≥9.
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
| a+b+c |
| a |
| a+b+c |
| b |
| a+b+c |
| c |
=3+(
| b |
| a |
| a |
| b |
| c |
| a |
| a |
| c |
| b |
| c |
| c |
| b |
∴
| b |
| a |
| a |
| b |
| c |
| a |
| a |
| c |
| b |
| c |
| c |
| b |
当且仅当a=b=c时,取等号,
∴
| 1 |
| a |
| 1 |
| b |
| 1 |
| c |
练习册系列答案
相关题目