题目内容
已知函数f(x)=x2+ax+b,g(x)=x2+cx+d.若f(2x+1)=4g(x),且f′x=g′(x),f(5)=30,求g(4).分析:因为f(2x+1)=4g(x),f′x=g′(x),f(5)=30得到四个式子联立求出a,b,c,d,即可求出g(4).
解答:解:∵f(x)=x2+ax+b,g(x)=x2+cx+d则由f(2x+1)=4g(x)得
(4+2a-4c)x+1+a+b-4d=0即a-2c+2=0,a+b-4d+1=0;
又∵f′x=g′(x),得a=c,
再∵f(5)=30,得5a+b=5,
四个方程联立求得:a=c=2,b=-5,d=-
则g(x)=x2+2x-
,
∴g(4)=
.
(4+2a-4c)x+1+a+b-4d=0即a-2c+2=0,a+b-4d+1=0;
又∵f′x=g′(x),得a=c,
再∵f(5)=30,得5a+b=5,
四个方程联立求得:a=c=2,b=-5,d=-
| 1 |
| 2 |
则g(x)=x2+2x-
| 1 |
| 2 |
∴g(4)=
| 47 |
| 2 |
点评:考查学生导数的运算能力,以及对函数值的理解能力.
练习册系列答案
相关题目
| π |
| 2 |
A、f(x)=2sin(πx+
| ||
B、f(x)=2sin(2πx+
| ||
C、f(x)=2sin(πx+
| ||
D、f(x)=2sin(2πx+
|