题目内容
在等比数列{an}中,前n项的和为Sn
(1)公比q=3,S3=
,求通项an
(2)a2=6,6a1+a3=30,求Sn.
(1)公比q=3,S3=
| 13 | 3 |
(2)a2=6,6a1+a3=30,求Sn.
分析:(1)由等比数列的求和公式结合已知可得数列的首项,进而可得通项公式;
(2)设数列的公比为q,则a2=a1q=6,6a1+a3=6a1+a1q2=30,两式相除可得q,进而可得首项,代入求和公式可得.
(2)设数列的公比为q,则a2=a1q=6,6a1+a3=6a1+a1q2=30,两式相除可得q,进而可得首项,代入求和公式可得.
解答:解:(1)由题意可得S3=
=
,解得a1=
,
∴通项公式an=
×3n-1=3n-2;
(2)设数列的公比为q,则a2=a1q=6,6a1+a3=6a1+a1q2=30,
两式相除可得
=5,即q2-5q+6=0,解得q=2,或q=3,
当q=2时,a1=3,此时Sn=
=3×2n-3,
当q=3时,a1=2,此时Sn=
=3n-1
| a1(1-33) |
| 1-3 |
| 13 |
| 3 |
| 1 |
| 3 |
∴通项公式an=
| 1 |
| 3 |
(2)设数列的公比为q,则a2=a1q=6,6a1+a3=6a1+a1q2=30,
两式相除可得
| 6+q2 |
| q |
当q=2时,a1=3,此时Sn=
| 3(1-2n) |
| 1-2 |
当q=3时,a1=2,此时Sn=
| 2(1-3n) |
| 1-3 |
点评:本题考查等比数列的通项公式和求和公式,涉及分类讨论的思想,属中档题.
练习册系列答案
相关题目
在等比数列{an}中,若a1=1,公比q=2,则a12+a22+…+an2=( )
| A、(2n-1)2 | ||
B、
| ||
| C、4n-1 | ||
D、
|