题目内容
盒中有3张分别标有1,2, 3的卡片.从盒中随机抽取一张记下号码后放回,再随机抽取一张记下号码,则两次抽取的卡片号码中至少有一个为偶数的概率为 .
5/9
已知等比数列{an}满足an+1+an=9·2n-1,n∈N*.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,若不等式Sn>kan-2对一切n∈N*恒成立,求实数k的取值范围.
某高校组织自主招生考试,其有2 000名学生报名参加了笔试,成绩均介于195分到275分之间,从中随机抽取50名同学的成绩进行统计,将统计结果按如下方式分成八组:第一组[195,205),第二组[205,215),……,第八组[265,275).如图是按上述分组方法得到的频率分布直方图.
(1)从这2 000名学生中,任取1人,求这个人的分数在255~265之间的概率约是多少?
(2)求这2 000名学生的平均分数;
(3)若计划按成绩取1 000名学生进入面试环节,试估计应将分数线定为多少?
抛物线y=x2上的点到直线x+y+1=0的最短距离为________.
如图,已知椭圆的中心在坐标原点,焦点在x轴上,长轴长是短轴长的2倍,且经过点M(2,1),平行于OM的直线l在y轴上的截距为m,直线l与椭圆相交于A,B两个不同点.
(1)求实数m的取值范围;
(2)证明:直线MA,MB与x轴围成的三角形是等腰三角形.
表面积为12π的圆柱,当其体积最大时,该圆柱的底面半径与高的比为 .
在平面直角坐标系xOy中,角α的顶点是坐标原点,始边为x轴的正半轴,终边与单位圆O交
于点A(x1 ,y1 ),α∈.将角α终边绕原点按逆时针方向旋转,交单位圆于点B(x2,y2).
(1)若x1=,求x2;
(2)过A,B作x轴的垂线,垂足分别为C,D,记△AOC及 △BOD的面积分别为S1,S2,且S1=S2,求tanα的值.
已知a≤1时,集合[a,2-a]中有且只有3个整数,则a的取值范围是________.
命题p:有的三角形是等边三角形.命题綈p:____________________________.