题目内容
函数
是定义在
上的偶函数,且对任意的![]()
,都有
.当
时,
.若直线
与函数
的图象有两个不同的公共点,则实数
的值为( )
| A. | B. |
| C. | D. |
C
解析试题分析:解:因为函数f(x)是定义在R上的偶函数,设x∈[-1,0],则-x∈[0,1],于是f(x)=(-x)2=x2.
设x∈[1,2],则(x-2)∈[-1,0].于是,f(x)=f(x-2)=(x-2)2.
①当a=0时,联立y="x," y=x2,解得x=0,y=0,或x=y=1,即当a=0时,即直线y=x+a与函数y=f(x)的图象有两个不同的公共点.
②当-2<a<0时,只有当直线y=x+a与函数f(x)=x2在区间[0,1)上相切,且与函数f(x)=(x-2)2在x∈[1,2)上仅有一个交点时才满足条件.由f′(x)=2x=1,解得x=
∴y=(
)2=
,故其切点为(
,
)
),∴a=
-
=-
由y=x-
, y=(x-2)2(1≤x<2)解之得x=
综上①②可知:直线y=x+a与函数y=f(x)在区间[0,2)上的图象有两个不同的公共点时的a的值为0或-
又函数f(x)是定义在R上的偶函数,且对任意的x∈R,都有f(x+2)=f(x),实数a的值为
或
,(n∈Z).故应选C.
考点:函数的奇偶性、周期性
点评:此题考查了函数的奇偶性、周期性及导数的应用,用到了数形结合的思想方法
练习册系列答案
相关题目
已知函数
,则
,
,
的大小关系为
| A. | B. |
| C. | D. |
下列函数中,不满足
的是( )
| A. | B. | C. | D. |
设
,若
,则
( )
| A. | B. | C. | D. |
把函数
的图像向左平移
个单位,所得曲线的一部分
如图示,则
的值分别为![]()
| A. | B. | C. | D. |
若
,且
,则函数
( )
| A. | B. |
| C. | D. |
下列函数在其定义域内,既是奇函数又存在零点的是( )
| A. | B. |
| C. | D. |
设
,
,
,则
的大小顺序是( )
| A. | B. | C. | D. |
函数
在区间
上( )
| A.没有零点 | B.只有一个零点 | C.有两个零点 | D.以上选项都错误 |