题目内容
(1)已知tanα=2,求sin(π-α)cos(2π-α)sin(-α+
| ||
| tan(-α-π)sin(-π-α) |
(2)已知cos(75°+α)=
| 1 |
| 3 |
分析:(1)利用诱导公式化简表达式,应用tanα=2求出cos2α=
,代入化简后的表达式即可求出原式的值.
(2)利用诱导公式化简sin(105°-α)+cos(375°-α),为2sin(75°+α),利用cos(75°+α)=
求出2sin(75°+α)即可.
| 1 |
| 5 |
(2)利用诱导公式化简sin(105°-α)+cos(375°-α),为2sin(75°+α),利用cos(75°+α)=
| 1 |
| 3 |
解答:解:(1)原式=
(2分)
=
(3分)
∵tanα=2,
=1+tan2α=5,
∴cos2α=
(6分),∴原式=
(7分)
(2)原式=sin(75°+α)+cos(15°-α)=2sin(75°+α)(9分)
∵cos(75°+α)=
,且-105°<75°+α<-15°,
∴sin(75°+α)<0∴sin(75°+α)=-
=-
(12分)
故原式=-
(14分)
| sinαcosα(-cosα) |
| (-tanα)sinα |
=
| cos2α |
| tanα |
∵tanα=2,
| 1 |
| cos2α |
∴cos2α=
| 1 |
| 5 |
| 1 |
| 10 |
(2)原式=sin(75°+α)+cos(15°-α)=2sin(75°+α)(9分)
∵cos(75°+α)=
| 1 |
| 3 |
∴sin(75°+α)<0∴sin(75°+α)=-
| 1-sin(75°+α) |
2
| ||
| 3 |
故原式=-
| 4 |
| 3 |
| 2 |
点评:本题考查诱导公式的应用,同角三角函数的基本关系式,考查计算能力,是基础题.
练习册系列答案
相关题目