题目内容

18.已知函数f(x)对任意x,满足f(x)=sinx+2f($\frac{π}{2}$-x),则f($\frac{5π}{4}$)=(  )
A.-$\sqrt{2}$B.-$\frac{\sqrt{2}}{2}$C.$\frac{\sqrt{2}}{2}$D.$\sqrt{2}$

分析 由题意知f($\frac{5π}{4}$)=sin$\frac{5π}{4}$+2f(-$\frac{3}{4}$π),f(-$\frac{3}{4}$π)=sin(-$\frac{3}{4}$π)+2f($\frac{5π}{4}$);联立方程可求解.

解答 解:∵f(x)=sinx+2f($\frac{π}{2}$-x),
∴f($\frac{5π}{4}$)=sin$\frac{5π}{4}$+2f(-$\frac{3}{4}$π),
f(-$\frac{3}{4}$π)=sin(-$\frac{3}{4}$π)+2f($\frac{5π}{4}$);
联立化简可得,
f($\frac{5π}{4}$)=sin$\frac{5π}{4}$+2(sin(-$\frac{3}{4}$π)+2f($\frac{5π}{4}$));
f($\frac{5π}{4}$)=-$\frac{\sqrt{2}}{2}$-2×$\frac{\sqrt{2}}{2}$+4f($\frac{5π}{4}$);
故f($\frac{5π}{4}$)=$\frac{\sqrt{2}}{2}$;
故选C.

点评 本题考查了三角函数的化简与求值,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网