题目内容
【题目】已知集合A={x|1-a≤x≤1+a}(a>0),B={x|x2-5x+4≤0}.
(1)若“x∈A”是“x∈B”的必要不充分条件,求实数a的取值范围;
(2)对任意x∈B,不等式x2-mx+4≥0都成立,求实数m的取值范围.
【答案】(1)[3,+∞);(2)(-∞,4].
【解析】
(1)根据“x∈A”是“x∈B”的必要不充分条件,即可得出a满足的条件.
(2)要使任意x∈B,不等式x2-mx+4≥0都成立,又B={x|x2-5x+4≤0}={x|1≤x≤4}.由x2-mx+4≥0,得
,只要
,即可得出.
解:(1)A={x|1-a≤x≤1+a}(a>0),B={x|x2-5x+4≤0}={x|1≤x≤4}.
因为“x∈A”是“x∈B”的必要不充分条件,即BA,
所以
,或
,
所以,
,或
,
所以a≥3.
所以,实数a的取值范围是[3,+∞).
(2)要使任意x∈B,不等式x2-mx+4≥0都成立,又B={x|x2-5x+4≤0}={x|1≤x≤4}.
由x2-mx+4≥0,得
,
则只要
,又
,当且仅当
,即x=2时等号成立.
实数m的取值范围(-∞,4].
练习册系列答案
相关题目