题目内容

平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B为焦点的椭圆”,那么


  1. A.
    甲是乙成立的充分不必要条件
  2. B.
    甲是乙成立的必要不充分条件
  3. C.
    甲是乙成立的充要条件
  4. D.
    甲是乙成立的非充分非必要条件
B
分析:当一个动点到两个顶点距离之和等于定值时,再加上这个和大于两个定点之间的距离,可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值.
解答:命题甲是:“|PA|+|PB|是定值”,
命题乙是:“点P的轨迹是以A.B为焦点的椭圆
∵当一个动点到两个顶点距离之和等于定值时,
再加上这个和大于两个定点之间的距离,
可以得到动点的轨迹是椭圆,没有加上的条件不一定推出,
而点P的轨迹是以A.B为焦点的椭圆,一定能够推出|PA|+|PB|是定值,
∴甲是乙成立的必要不充分条件
故选B.
点评:本题考查椭圆的定义,解题的关键是注意在椭圆的定义中,一定要注意两个定点之间的距离小于两个距离之和.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网