题目内容

在数列{an}中,已知a1=1,an=n2[1+++…+](nN*,且n≥2).

(1)当nN**,n≥2时,求证:

(2)比较(1+)(1+)…(1+)与4的大小.

(1)证明:当n≥2时,=1++…+=1++…++,?

-=.                                                                                              ?

(2)解:当n=1时,1+=2<4,又a2=22=4,                                                                   ?

n≥2时,由(1)可知=,?

=,                                                                                                ?

∴当n≥2时,(1+)(1+)(1+)…()?

=···…·

=····…··(1+an)??

=2····…··(1+an)=(1+an)??

=+·n2·[1+++…+].                                                            ?

=-(n≥2),?

∴1++…+<1+(1-)+…+(-)=2-.?

∴(1+)(1+)(1+)…(1+)<+2(2-)=4+-=4-<4.

综上,可知(1+)(1+)…(1+)<4.


练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网