题目内容
设随机变量ξ的分布列由p(ξ=k)=a(
)k,k=1,2,3,则a的值为( )
| 1 |
| 3 |
分析:根据所给的随机变量的分布列和分布列的所有概率之和等于1,列出关于a的一元一次方程,得到字母的值.
解答:解:∵随机变量ξ的分布列由p(ξ=k)=a(
)k,k=1,2,3,
∴根据分布列的性质有a×
+a(
)2+a(
)3=1,
∴a(
+
+
)=a×
=1,
∴a=
,
故选D.
| 1 |
| 3 |
∴根据分布列的性质有a×
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
∴a(
| 1 |
| 3 |
| 1 |
| 9 |
| 1 |
| 27 |
| 13 |
| 27 |
∴a=
| 27 |
| 13 |
故选D.
点评:本题考查离散型随机变量的分布列的性质和简单应用,本题解题的关键是根据分布列的性质得到关于字母系数的方程,利用方程思想来解题,本题是一个基础题.
练习册系列答案
相关题目