题目内容
设随机变量X的分布列P(X=
)=ak,(k=1、2、3、4、5).
(1)求常数a的值;
(2)求P(X≥
);
(3)求P(
<X<
).
| k |
| 5 |
(1)求常数a的值;
(2)求P(X≥
| 3 |
| 5 |
(3)求P(
| 1 |
| 10 |
| 7 |
| 10 |
分析:(1)由随机变量X的分布列P(X=
)=ak,(k=1、2、3、4、5),知a+2a+3a+4a+5a=1,由此能求出a.
(2)由P(X=
)=
k,k=1,2,3,4,5.知P(X≥
)=P(X=
)+P(X=
)+P(X=1),由此能求出结果.
(3)由
<X<
,只有X=
,
,
时满足,由此能求出P(
<X<
)的值.
| k |
| 5 |
(2)由P(X=
| k |
| 5 |
| 1 |
| 15 |
| 3 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
(3)由
| 1 |
| 10 |
| 7 |
| 10 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
| 1 |
| 10 |
| 7 |
| 10 |
解答:解:(1)∵随机变量X的分布列P(X=
)=ak,(k=1、2、3、4、5),
∴a+2a+3a+4a+5a=1,
解得a=
.
(2)∵P(X=
)=
k,k=1,2,3,4,5.
∴P(X≥
)=P(X=
)+P(X=
)+P(X=1)
=
+
+
=
.
(3)∵
<X<
,只有X=
,
,
时满足,
∴P(
<X<
)=P(X=
)+P(X=
)+P(X=
)
=
+
+
=
.
| k |
| 5 |
∴a+2a+3a+4a+5a=1,
解得a=
| 1 |
| 15 |
(2)∵P(X=
| k |
| 5 |
| 1 |
| 15 |
∴P(X≥
| 3 |
| 5 |
| 3 |
| 5 |
| 4 |
| 5 |
=
| 3 |
| 15 |
| 4 |
| 15 |
| 5 |
| 15 |
| 4 |
| 5 |
(3)∵
| 1 |
| 10 |
| 7 |
| 10 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
∴P(
| 1 |
| 10 |
| 7 |
| 10 |
| 1 |
| 5 |
| 2 |
| 5 |
| 3 |
| 5 |
=
| 1 |
| 15 |
| 2 |
| 15 |
| 3 |
| 15 |
| 2 |
| 5 |
点评:本题考查离散型随机变量的概率分布列的应用,是基础题.解题时要认真审题,仔细解答.
练习册系列答案
相关题目