题目内容
求证:logn(n+1)>log(n+1)(n+2)(n>1,n∈N).
证明:∵n>1,且n∈N,
∴logn(n+1)>0,log(n+1)(n+2)>0.
∴
=log(n+1)(n+2)·log(n+1)n
<[
]2
=[
]2
<[
]2=1.
故logn(n+1)>log(n+1)(n+2)(n>1,n∈N).
练习册系列答案
相关题目
题目内容
求证:logn(n+1)>log(n+1)(n+2)(n>1,n∈N).
证明:∵n>1,且n∈N,
∴logn(n+1)>0,log(n+1)(n+2)>0.
∴
=log(n+1)(n+2)·log(n+1)n
<[
]2
=[
]2
<[
]2=1.
故logn(n+1)>log(n+1)(n+2)(n>1,n∈N).