题目内容

已知双曲线的方程为, 直线通过其右焦点F2,且与双曲线的右支交于AB两点,将AB与双曲线的左焦点F1连结起来,求|F1A|·|F1B|的最小值

设A(x1,y1),B(x2,y2),A到双曲线的左准线x= ─= ─的距离

d=|x1+|=x1+,由双曲线的定义,=e=,∴|AF1|=(x1+)=x1+2,

同理,|BF1|=x2+2,∴|F1A|·|F1B|=(x1+2)(x2+2)=x1x2+(x1+x2)+4    (1)

双曲线的右焦点为F2(,0),

(1)当直线的斜率存在时设直线AB的方程为:y=k(x),

消去y得  (1─4k2)x2+8k2x─20k2─4=0,

x1+x2=x1x2= ─, 代入(1)整理得

|F1A|·|F1B|=+4=+4=+4=+

∴|F1A|·|F1B|>;

(2)当直线AB垂直于x轴时,容易算出|AF2|=|BF2|=,

∴|AF1|=|BF1|=2a+=(双曲线的第一定义), ∴|F1A|·|F1B|=

由(1), (2)得:当直线AB垂直于x轴时|F1A|·|F1B|  取最大值


解析:

点拨与提示:由双曲线的定义得:|AF1|=(x1+)=x1+2,|BF1|=x2+2,

|F1A|·|F1B|=(x1+2)(x2+2)=x1x2+(x1+x2)+4 ,将直线方程和双曲线的方程联立消元,得x1+x2=x1x2= ─.本题要注意斜率不存在的情况.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网