题目内容
已知6sin2α+sinαcosα-2cos2α=0,α∈[
,π],求sin(2α+
)的值.
| π |
| 2 |
| π |
| 3 |
由已知得:(3sinα+2cosα)(2sinα-cosα)=0?3sinα+2cosα=0或2sinα-cosα=0
由已知条件可知cosα≠0,所以α≠
,即α∈(
,π).于是tanα<0,∴tanα=-
.
sin(2α+
)=sin2αcos
+cos2αsin
=sinαcosα+
(cos2α-sin2α)
=
+
×
=
+
×
.
将tanα=-
代入上式得
sin(2α+
)=-
+
×
=-
+
.即为所求.
由已知条件可知cosα≠0,所以α≠
| π |
| 2 |
| π |
| 2 |
| 2 |
| 3 |
sin(2α+
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
=sinαcosα+
| ||
| 2 |
=
| sinαcosα |
| cos2α+sin2α |
| ||
| 2 |
| cos2α-sin2α |
| cos2α+sin2α |
=
| tanα |
| 1+tan2α |
| ||
| 2 |
| 1-tan2α |
| 1+tan2α |
将tanα=-
| 2 |
| 3 |
sin(2α+
| π |
| 3 |
(-
| ||
1+(-
|
| ||
| 2 |
1-(-
| ||
1+(-
|
=-
| 6 |
| 13 |
| 5 |
| 26 |
| 3 |
练习册系列答案
相关题目