题目内容
将某选手的9个得分去掉1个最高分,去掉1个最低分,7个剩余分数的平均分为91.现场作的9个分数的茎叶图后来有1个数据模糊,无法辨认,在图中以x表示,则7个剩余分数的方差为 .
若,设函数的零点为的零点为,则的取值范围是 ( )
A. B. C. D.
函数y=sin(2x+)图象的一条对称轴方程是:
A. B. C. D.
已知函数过点.
(1)求实数;
(2)将函数的图象向下平移1个单位,再向右平移个单位后得到函数图象,设函数关于轴对称的函数为,试求的解析式;
(3)对于定义在上的函数,若在其定义域内,不等式恒成立,求实数的取值范围.
连续抛掷两次骰子,得到的点数分别为m,n,记向量的夹角为,则的概率是( )
某玩具生产公司每天计划生产卫兵、骑兵、伞兵这三种玩具共100个,生产一个卫兵需5分钟,生产一个骑兵需7分钟,生产一个伞兵需4分钟,已知总生产时间不超过10小时.若生产一个卫兵可获利润5元,生产一个骑兵可获利润6元,生产一个伞兵可获利润3元.
(1)用每天生产的卫兵个数x与骑兵个数y表示每天的利润W(元);
(2)怎样分配生产任务才能使每天的利润最大,最大利润是多少?
设,,若,则实数的取值范围是
A、 B、 C、 D、
已知函数,,其中表示函数在处的导数,为正常数.
(1)求的单调区间;
给定椭圆,称圆心在坐标原点,半径为的圆是椭圆的“伴随圆”. 若椭圆C的一个焦点为,其短轴上的一个端点到距离为.
(Ⅰ)求椭圆及其“伴随圆”的方程;
(Ⅱ)若过点的直线与椭圆C只有一个公共点,且截椭圆C的“伴随圆”所得的弦长为,求的值;
(Ⅲ)过椭圆C“伴随圆”上一动点Q作直线,使得与椭圆C都只有一个公共点,试判断直线的斜率之积是否为定值,并说明理由.