题目内容
如图,已知直三棱柱ABC—A1B1C1,
。E、F分别是棱CC1、AB中点。
(1)求证:
;
(2)求四棱锥A—ECBB1的体积;
(3)判断直线CF和平面AEB1的位置关系,并加以证明。

(1)求证:
(2)求四棱锥A—ECBB1的体积;
(3)判断直线CF和平面AEB1的位置关系,并加以证明。
4,
平面AEB1
解: (1)证明:
三棱柱ABC—A1B1C1是直棱柱,
平面ABC 1分
又
平面ABC, 2分
3分
(2)解:
三棱柱ABC—A1B1C1是直棱柱,
平面ABC,
又
平面ABC




平面ECBB1 6分
7分
是棱CC1的中点,

8分
(3)解:CF//平面AEB1,证明如下:
取AB1的中点G,联结EG,FG
分别是棱AB、AB1中点

又

四边形FGEC是平行四边形
又
平面AEB,
平面AEB1,
平面AEB1。12分
又
(2)解:
又
取AB1的中点G,联结EG,FG
又
又
练习册系列答案
相关题目