题目内容
如图,在△ABC中,已知|| AB |
| AC |
| AD |
| 1 |
| 3 |
| AB |
| 2 |
| 3 |
| AC |
(1)证明:B,C,D三点共线; (2)若|
| AD |
| 6 |
| BC |
分析:(1)本题考查的知识点是向量共线定理,由
=
+
,得
=
,
与
有公共点B,于是B,C,D三点共线;
(2)由
=
+
,平方得求得向量的数量积
•
=
.从而得到cos∠BAC,最后由余弦定理得|
|的值.
| AD |
| 1 |
| 3 |
| AB |
| 2 |
| 3 |
| AC |
| BD |
| 3 |
| 3 |
| CB |
| BD |
| CB |
(2)由
| AD |
| 1 |
| 3 |
| AB |
| 2 |
| 3 |
| AC |
| AB |
| AC |
| 11 |
| 2 |
| BC |
解答:解:(1)当
=
+
时,
∴
-
= -
+
,
则
=
,
与
有公共点B,
于是B,C,D三点共线;
(2)由
=
+
,平方得:
2=
2+
2+
•
,
从而有:6=
+
+
•
∴
•
=
∴4×2×cos∠BAC=
cos∠BAC=
.
由余弦定理得:|
| 2=16+4-2×4×2×cos∠BAC=9
∴|
|的值为3.
| AD |
| 1 |
| 3 |
| AB |
| 2 |
| 3 |
| AC |
∴
| AD |
| AB |
| 2 |
| 3 |
| AB |
| 2 |
| 3 |
| AC |
则
| BD |
| 3 |
| 3 |
| CB |
| BD |
| CB |
于是B,C,D三点共线;
(2)由
| AD |
| 1 |
| 3 |
| AB |
| 2 |
| 3 |
| AC |
| AD |
| 1 |
| 9 |
| AB |
| 4 |
| 9 |
| AC |
| 4 |
| 9 |
| AB |
| AC |
从而有:6=
| 16 |
| 9 |
| 16 |
| 9 |
| 4 |
| 9 |
| AB |
| AC |
∴
| AB |
| AC |
| 11 |
| 2 |
∴4×2×cos∠BAC=
| 11 |
| 2 |
cos∠BAC=
| 11 |
| 16 |
由余弦定理得:|
| BC |
∴|
| BC |
点评:若A、B、P三点共线,O为直线外一点,则
=λ
+μ
,且λ+μ=1,反之也成立,这是三点共线在向量中最常用的证明方法和性质,大家一定要熟练掌握.
| OP |
| OA |
| OB |
练习册系列答案
相关题目
| 3 |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|